
Detection of Multiple Deformable Objects using PCA-SIFT

Stefan Zickler and Alexei Efros
Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, U.S.A.

Abstract

In this paper, we address the problem of identifying and lo-
calizing multiple instances of highly deformable objects in
real-time video data. We present an approach which uses
PCA-SIFT (Scale Invariant Feature Transform) in combina-
tion with a clustered voting scheme to achieve detection and
localization of multiple objects while providing robustness
against rapid shape deformation, partial occlusion, and per-
spective changes. We test our approach in two highly de-
formable robot domains and evaluate its performance using
ROC (Receiver Operating Characteristic) statistics.

Introduction
SIFT (Scale Invariant Feature Transform) has been shown
to be an effective descriptor for traditional object recogni-
tion applications in static images (Lowe 1999). In this pa-
per, we propose and evaluate a method that uses PCA-SIFT
(Ke & Sukthankar 2004) in combination with a clustered
voting scheme to achieve detection and localization of mul-
tiple, highly deformable objects in real-time video footage.

The detection and localization of actively deforming ob-
jects, such as walking or dancing humanoid robots, is a sig-
nificantly more challenging task than the well researched
problem of detecting fixed shape objects in static images.
One major reason for this is that highly deformable ob-
jects cannot be easily represented by a single global feature
descriptor because an object’s overall shape configuration
can change fundamentally between observations. The same
problem arises for approaches which focus on representing
an object by the precise geometric relationship of its smaller
local features, such as Hough Transforms used in combina-
tion with SIFT feature descriptors (Lowe 1999). Our pre-
sented approach aims to overcome this problem by repre-
senting an object using purely local features without enforc-
ing a strict geometric relationship between them. Instead,
we introduce a probabilistic voting scheme where each de-
tected local feature will produce its own hypothesis of the
object’s most likely location. This proposed algorithm at-
tempts to provide robustness against object deformation, ob-
ject motion, and perspective changes.

This paper is organized as follows. We first introduce
some of the related work in this area and provide a short

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

review of the SIFT feature descriptor. The body of this pa-
per explains the algorithm in detail, followed by presenta-
tion and analysis of experimental results from our sample
domains. Concluding remarks and suggestions for future
work are presented in the final section.

Related Work

It has been shown that SIFT descriptors can be used to
achieve fairly robust object detection in still images (Lowe
1999). SIFT has furthermore been used in several other
related applications such as metric robot localization (Se,
Lowe, & Little 2001) and medical imaging (Moradi, Abol-
maesoumi, & Mousavi 2006); and it was shown to be one
of the best currently available descriptors in a comparative
study (Mikolajczyk & Schmid 2003).

Various approaches exist on real-time recognition of de-
formable objects. A common one is silhouette matching
using Distance Transforms (e.g. Chamfer Distance) which
has been used for pedestrian recognition in smart vehicles
(Gavrila & Philomin 1999). This approach contains several
inherent problems, the most significant one being the fact
that objects are only defined by their contours and not by
any of their inner features. This not only increases the like-
lihood of finding false positives due to contour ambiguity,
but it also results in combinatorial explosions when attempt-
ing to match all possible contours of highly complex and
deformable objects. Also, scale and rotation are not inher-
ently invariant and therefore need to be treated as additional
deformation factors. While some of the issues such as con-
tour ambiguity and occlusion handling can be improved us-
ing Oriented Edges and Hausdorff metrics (Olson & Hutten-
locher 1997), most of the underlying problems of countour-
matching do remain. We are aware of a hybrid model which
attempts to combine this kind of counter-matching approach
with the use of inner object features in order to achieve
pedestrian recognition (Leibe, Seemann, & Schiele 2005).
While results look promising, this approach still struggles
with some of the inherent downsides mentioned above and
is to our knowledge not yet able to perform in real-time.

Active Appearance Models (Cootes, Edwards, & Taylor
2001) are another recent advancement in the vision commu-
nity. Unfortunately, these models require highly specific sta-
tistical models which need to be manually adapted to work
for a particular object class (such as human faces). Ac-



tive Appearance Models do not generalize well for random
classes, and are furthermore unlikely to perform well for
highly deformable classes where no simple statistical model
exists.

Review of the SIFT feature descriptor

While it is beyond the scope of this paper to describe the
SIFT algorithm in its entirety, we will quickly review its
most significant properties and describe why it is suitable
for our purpose. SIFT features are generated by finding in-
teresting local keypoints in an image. A very common and
efficient way of generating these keypoints is by locating
the maxima and minima of Difference-of-Gaussians (DoG)
in the image’s scale-space pyramid. This is done by calcu-
lating different levels (octaves) of Gaussian blur on the input
image and then computing the difference of neighboring oc-
taves. A canonical orientation vector can then be computed
for each keypoint, thus giving a complete keypoint coordi-
nate of X, Y, scale, and orientation. A SIFT feature is a 128-
dimensional vector, which is calculated by combining the
orientation histograms of locations closely surrounding the
keypoint in scale-space. The advantage of SIFT keypoints
is that they are invariant to scale and rotation, and relatively
robust to perspective changes (experiments have shown that
SIFT is typically stable up to a perspective change of ap-
proximately 10-20 degrees). This makes it an ideal descrip-
tor for object recognition tasks.

One common problem of SIFT is its relatively high di-
mensionality, which makes it less suitable for nearest neigh-
bor lookups against a training dataset. PCA-SIFT is an ex-
tension to SIFT which aims to reduce SIFT’s high dimen-
sionality by applying principal component analysis (PCA).
20-dimensional PCA-SIFT was used as the feature descrip-
tor in this paper.

Description of the Approach
In this section we will first give a concise algorithmic sum-
mary of our approach, and then follow up with a detailed
description and discussion of each significant step. A sim-
plified flowchart of the approach can be seen in figure 1. Our
algorithm consists of two major components: the training
stage in which we “learn” the representation of an object by
collecting its PCA-SIFT features; and, the recognition stage
in which we attempt to detect and localize the object in real-
time video footage. The training stage of our algorithm is as
follows:

1. We record a continuous training video V of the object.

2. For each frame vi of our training video V :

(a) We generate the set of all PCA-SIFT keypoints Ki con-
taining keypoints kij ∈ Ki.

(b) We manually create an annotation mask mi approxi-
mating the boundary and center ci of the training ob-
ject.

(c) We reject any keypoints from Ki which are lying out-
side of the annotation mask mi.

(d) We store the relative location locrelij of each key-
point towards the annotated object’s center ci such that
locrelij = ci − loc(kij).

Input Video

Input Video

PCA-SIFT

PCA-SIFT

Annotation

Voting Space Cluster & Centroid

Clustering

Large Dataset

Reduced DatasetT
ra

in
in

g
T

e
s
ti

n
g

Figure 1: A simplified flowchart of the presented approach

3. We combine all retained keypoints kij into a single set T .

4. We further reduce the size of T using agglomerative clus-
tering. This yields our final training dataset.

The detection and localization stage of our algorithm is as
follows:
For each frame vi of our incoming continuous video V :

1. We generate the set of all PCA-SIFT keypoints Ki con-
taining keypoints kij ∈ Ki.

2. For each keypoint kij of Ki:

(a) We perform a nearest neighbor lookup with all the
elements tl of the training set T . The main detec-
tion threshold θ is defined as the Euclidean distance in
PCA-SIFT space between a keypoint kij and its near-
est neighbor tl from the training dataset. An observed
PCA-SIFT feature kij is considered a match if

min
tl∈T

D(kij , tl) ≤ θ

where D is the Euclidean distance function.

(b) For any matching kij we calculate the hypothesized po-
sition of the object’s center. We do so by scaling and ro-
tating the previously recorded relative position locrell
of tl to match the scale and orientation of kij . More
specifically we calculate the hypothesized position pl

using the following equation:

pl = pos(tl) +

„

scale(kij)

scale(tl)
×

h

cos β − sin β
sin β cos β

i

× locrell

«

where β = orientation(kij) − orientation(tl).

3. We run a clustering algorithm on the voting space using
a clustering threshold δ and enforcing a minimum cluster
size of s votes. We then calculate the center of mass for
each cluster. This is our final localization result.

Training

We start by recording a training video of the object, span-
ning a continuous spectrum of perspectives. Each incom-
ing video frame vi is treated as an independent observation
of which we obtain a set of feature descriptors Ki. PCA-
SIFT was chosen as the descriptor of choice, because it has
a significantly reduced dimensionality compared to standard



SIFT while keeping a similar level of overall robustness. We
adapted the PCA-SIFT implementation used by (Ke & Suk-
thankar 2004). Difference-of-Gaussians (DoG) is used as
the basic interest point detector which is invariant to scale
and rotation changes. The PCA-SIFT descriptors used in
this paper are 20-dimensional. A typical frame in our test-
ing environment generated somewhere between 50 and 300
keypoints.

Annotation

In order to build a training subset out of all the generated
PCA-SIFT features, we first need to determine which ones
belong to the training object and which ones do not. For this
purpose, a graphical annotation tool was developed which
allows the user to approximate each object’s shape by draw-
ing one or more geometric primitives (such as circles). This
approach greatly simplifies the annotation task as it is possi-
ble to only annotate certain keyframes and then interpolate
the movement and size of these geometric primitives for all
frames in between two keys. The center ci of each object is
inherently annotated by calculating the center of mass of the
geometric primitives used to approximate the object’s shape.
The relative location locrelij of each PCA-SIFT feature to-
ward the center of the object ci is furthermore computed as
previously described. All PCA-SIFT features lying outside
of any annotated region are rejected from the training set.

Post-Processing

Even after annotation-based filtering we still have a very
large dataset of relevant SIFT features. Considering that this
data come from a continuous video sequence, it can be as-
sumed that many of the collected features are highly similar
or even identical. This is partly the case because a partic-
ular feature might only change slightly (or not even at all)
between two video frames. Another reason for redundancy
in the dataset is that a single object might contain several
similar local features at different locations.

Since we are expecting to perform lookup on this dataset
during recognition, it is desirable to reduce its size as much
as possible without throwing away too much information.
For this purpose, we run an agglomerative clustering algo-
rithm (Gowda & Krishna 1978) which merges similar fea-
tures in the dataset. When merging, we use the Mean to
compute the location of the newly merged feature. Unlike
k-Means, agglomerative clustering allows us to directly de-
fine a distance threshold in 20-dimensional PCA-SIFT space
to determine whether two features should be merged. Eu-
clidean distance is used as the distance metric.

Recognition

The goal of the recognition stage is to detect and to local-
ize all instances of the trained object in an incoming video
stream. We again start out by generating all PCA-SIFT key-
points for each observation received from the video stream.
We then perform a nearest neighbor lookup for each of these
features against every feature from the reduced training set
T . In the current implementation, this is done by a sim-
ple linear nearest-neighbor search, mainly for simplicity rea-
sons. Any other more sophisticated data-structure suited for

higher dimensional data (such as KD-trees) could be used
equally well if additional performance is required. The main
detection threshold θ is defined as the Euclidean distance in
PCA-SIFT space between a feature and its nearest neigh-
bor from the training dataset as previously described in the
formal algorithm definition. Choosing a good value of θ is
critical. A smaller value of θ will deliver fewer, but more
precise matches while a larger value of θ will deliver more
matches while increasing the likelihood of false positives.

Centroid Voting Space

A voting scheme is used to determine the location of each
object in the image. Any matched feature kij votes for where
it predicts the center of its parental object to be. This is
achieved by retrieving the nearest neighbor tl and its rela-
tive location towards the annotated object’s center from the
training set T . We then rotate and scale tl’s relative location
vector to match the scale and orientation of the newly de-
tected keypoint kij . When adding this vector to the absolute
location of kij , we get a hypothesis of the object’s center.
This point is counted as a vote for the object’s center in the
two-dimensional voting space.

It should be noted that this is a heuristic approximation.
There is no clear guarantee that the same feature cannot oc-
cur at a different relative location towards the object’s center
than in the training data. This is especially the case because
the object is deformable. However, we can optimistically as-
sume that many of the votes do in fact approximately match
the object’s center and that our voting scheme will take care
of potential outliers.

An interesting side-effect of this kind of voting space ap-
proach is that it automatically solves the problem of occlu-
sion. Even when an object is half occluded or moving off the
visible screen, we are still able to correctly hypothesize its
center. This would not be the case if we were to use a simple
center of mass calculation over all matching features’ abso-
lute locations.

Clustering on the Voting Space

After populating the voting space, we attempt to localize its
peaks by using a clustering algorithm. In our implemen-
tation we have experimented with both Mean-Shift (Cheng
1995) and agglomerative clustering. Both of them per-
formed virtually identical in terms of quality. While Mean-
Shift should be considered slightly less predictable due to
its random initialization, the two algorithms did not produce
any noticeable difference in detection results (less than 1%
difference in the recognition rate). One significant differ-
ence however is speed: Mean-Shift runs significantly faster
than agglomerative clustering when there is a large count of
votes.

Both Mean-Shift and agglomerative clustering require the
definition of a distance-threshold δ (this is known as the
‘bandwidth’ in Mean-Shift). The meaning of δ becomes
clear when we take a simplified look at how agglomerative
clustering works. Each point starts out as its own cluster. If
the Euclidean distance between two clusters is smaller than
δ then the two clusters are merged into one. This process



is repeated until no more merges are possible. As our ex-
periments will show, the clustering threshold δ is a crucial
variable to gain decent detection results. Choosing a smaller
value of δ makes the clustering of votes less likely, and can
lead to unnecessary multiple detections of the same object.
Choosing a larger value of δ increases the likelihood of clus-
tering votes and increases the risk of wrongly grouping mul-
tiple object instances into a single detection point.

After completion of the clustering process we reject all
clusters that contain less votes than a certain minimum clus-
ter size threshold s. The center of mass is then computed
for each remaining cluster. This becomes our final detection
result.

Temporal Voting Space

So far we have only looked at single, independent video
frames. One way to make use of the fact that the testing data
are a continuous video-stream is to extend the previously de-
scribed voting space into three dimensions, namely X, Y, and
time. This can be achieved by combining the voting spaces
of the last N frames with the third dimension representing
the age of each frame multiplied by a scalar constant λ. We
can then run the standard clustering mechanisms discussed
in the previous section in this three-dimensional space.

The reason why one would consider this kind of temporal
extension is to filter out noise in the video. Choosing a large
N results in a stronger temporal filtering effect, which may
reduce the rate of false positives, but may also decrease the
object detection rate. Choosing a small N may increase the
detection rate, but might concurrently increase the amount
of false positives due to noise. Another problem of choos-
ing a large value of N is that we create an effect of tempo-
ral lag. Especially when an object moves quickly along the
image-plane, the centroid calculation will determine an av-
erage which will cover the past N frames, therefore misrep-
resenting the real current location of the object in the latest
video frame.

Experimental Results
We test our approach in two different domains. The first
domain originates from a set of randomly chosen RoboCup
(Kitano et al. 1997) legged league games. The de facto
standard robot used in this league is the SONY AIBO. It is a
highly dynamic and deformable robot, featuring 20 degrees
of freedom that allow almost any thinkable actuation of legs,
feet, neck, and head. Participating RoboCup teams typically
create their own unique robotic motions which range from
basic walking patterns to rather complex and unorthodox
bodily expressions. Video scenes are normally populated
with several robots which can be depicted in various shape
configurations, perspectives, and scales. Other frequent vi-
sion constraints are robot occlusion, highly cluttered back-
grounds (for instance by a human audience), and motion
blurring.

The second domain consists of two dancing humanoid
robots in a laboratory environment. The robots used in this
domain are SONY QRIOs, again featuring a great amount of
deformability. The input used in both domains was in 8 bit
greyscale at a 320x240 pixel resolution, captured at 30fps.

Training Data

Continuous video footage is used in order to train for a
new object. Since PCA-SIFT is robust against perspective
changes up to approximately 10-20 degrees, it is recom-
mendable that the training video contains views from var-
ious angles, preferably the ones which we might expect to
encounter during testing. For the AIBO domain, three con-
tinuous videos were chosen as training data. Each of them
contained between 300 and 1000 frames. There was no
particular selection criteria for these videos, except that ev-
ery one of them depicted several robots in various actions
and angles that subjectively appeared to present a typical
RoboCup game. For the QRIO domain, two 2000 frame
training videos were used, each featuring a single robot, per-
forming a dance in an uncluttered environment.

Testing Data

For the AIBO domain, special care was taken that the testing
videos not only originated from different RoboCup games
than the training data, but also that at least one of the two
teams in these games did not occur in any of the training
footage. It was furthermore ensured that the testing video
was taped from a different perspective than all of the train-
ing videos. Both of these constraints were added to increase
the demand of robustness from our approach. For the QRIO
domain, a testing video with two dancing robots was cre-
ated. The dance used in this video was significantly differ-
ent from the one used in the training stage, containing many
untrained shape configurations. This video furthermore cov-
ered various continuous perspective changes as well as robot
occlusions.

Evaluation Criteria

We count a match if we correctly detect and localize the
object’s center in the image. The requirement is that the
detected center lies close enough to the object’s annotated
center. We chose this threshold to be 50% of the object’s
annotated bounding box radius. Anything located outside of
the circle with this radius will be counted as a false positive.

ROC curves (Receiver Operating Characteristic) are used
as the main performance evaluator. Each curve shows a plot
of the detection rate vs. the rate of false positives. A curve is
generated by iterating through different detection thresholds
θ. We compare the influences of different variables to our
approach by comparing their ROC curves respectively.

The detection rate is defined as

Pdetection =
# of correct detections

# of annotated objects
.

It is 1.0 if no objects are annotated in the image.

The false positive rate is defined as

Pfalse positives =
# of incorrect detections

# of detections (both correct and incorrect)
.

It is 0.0 if no objects have been detected.



 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

R
e

c
o

g
n

it
io

n
 R

a
te

False Positive Rate

CT=1
CT=2
CT=5

CT=30
CT=40

(a) Comparison of clustering
thresholds in the AIBO domain

 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

R
e

c
o

g
n

it
io

n
 R

a
te

False Positive Rate

min CS=1
min CS=2
min CS=3
min CS=4

(b) Comparison of minimum
cluster size per frame in the
AIBO domain

 0.5

 0.75

 1

 0  0.25  0.5  0.75

R
e

c
o

g
n

it
io

n
 R

a
te

False Positive Rate

CT=2
CT=5

CT=10
CT=40

(c) Comparison of clustering
thresholds in the QRIO domain

 0.5

 0.75

 1

 0  0.25  0.5  0.75

R
e

c
o

g
n

it
io

n
 R

a
te

False Positive Rate

t=1
t=8

t=64

(d) Comparison of temporal fil-
tering sizes in the QRIO domain

Figure 2: ROC Curves analyzing the effects of various pa-
rameters. Each Curve was generated by modifying the near-
est neighbor threshold θ. Each datapoint represents an aver-
age of running the algorithm on an entire video.

Performance

The following experimental results were created using the
videos described in the previous section. After the annota-
tion step, the training dataset of the AIBO domain contained
a total of approximately 110,000 features. This dataset was
then reduced using agglomerative clustering to have a total
15,000 features. The dataset of the QRIO domain was simi-
larly reduced from about 132,000 to 4,575 features.

Some interesting frames of the AIBO domain’s testing
video and their detection results can be seen in figure 4. This
video contained various perspectives and configurations that
have never been encountered during the training stage. One
such configuration can be seen in figure 4(f) where two
robots are performing a special “celebration” move which
mainly exposes the robots’ underside to the camera. Detec-
tion fails in this instance as none of the visible local fea-
tures were ever observed during training. Two frames of the
QRIO domain and their detection results can be seen in fig-
ure 3.

PCA-SIFT is certainly not immune to finding false posi-
tives. It is possible that a completely different object gen-
erates features that coincide with the ones from the training
object due to local similarities. Although voting and tempo-
ral filtering are able to reduce these coincidental outliers, we
can still end up with the generation of false positives. Fig-
ure 4(g) contains such a scene where some features in the
cluttered background were falsely detected to belong to the

trained object.
Figures 2(a) and (c) analyze the performance of our ap-

proach under different voting space clustering thresholds δ
(abbreviated CT in the figures). As predicted, choosing a
threshold too small as well as choosing a threshold too large
will deliver unoptimal results. A threshold in the range from
5 to 20 turned out to deliver the best results in both of our
testing domains.

Figure 2(d) evaluates the impact of the proposed temporal
clustering mechanism in the QRIO domain. We compare a
temporal size of one frame (meaning no temporal clustering)
with a temporal size of 8 and 64 frames respectively. We
can clearly see that a short temporal filtering range does in
fact significantly reduce the rate of false positives, while an
excessively long temporal filtering range actually worsens
the results.

In figure 2(b) we can see the impact of different mini-
mum cluster size thresholds in the AIBO domain. While a
minimum cluster size of one tends to be too optimistic, a
minimum size of two seems to significantly reduce the rate
of false positives while only slightly decreasing in the max-
imum recognition rate. A minimum size of anything greater
than two starts to significantly hurt the recognition rate.

Figure 3: Two frames from the QRIO domain (visualized as
bright background) and both of their centroid voting spaces.
Each vote is annotated by a small black dot. The result
of clustering and centroid-finding on this voting space is
marked by larger black circles.

Real-time performance was a significant goal of this ap-
proach as it is intended to be used in a real robotic setting.
On an Intel Core 1.8GHz processor at a 320x240 resolu-
tion, the algorithm performed typically between 1 and 10
frames per second (using a training dataset with approxi-
mately 4000 features). At a resolution of 176x144, the al-
gorithm performs at approximately 5 to 15 frames per sec-
ond on the same machine. For the above mentioned training
data, about 50% of processing time was spent on building
the PCA-SIFT vectors. Another 40% was spent on the near-
est neighbor search through the compressed training dataset.
Only 10% or less were spent on the actual clustering of the
voting space when using Mean-Shift clustering.

Conclusion and Future Work
We have presented a simple approach to use PCA-SIFT for
detecting multiple deformable objects in real-time. We have
furthermore analyzed its performance using ROC statistics.

It should be noted that although the robots used in our
experimental setup are highly deformable, they generally



(a) (b) (c) (d) (e) (f) (g)

Figure 4: A selection of interesting frames from the testing video of the AIBO domain. The top row shows the input frames.
The bottom row shows the centroid voting space after running PCA-SIFT on the input frames. Each vote is annotated by a
small black dot. The result of clustering and centroid-finding on this voting space is marked by larger black circles.

all share the same hardware characteristics. This means
that besides dynamic joint configurations and minor surface
differences, there exists only small inter-class variation in
terms of texture. We are aware of the fact that some other
object-classes such as pedestrians in human scenes or cer-
tain types of animals are not only deformable, but also have
an extremely high inter-class variation of shape, texture, and
color. Although we did not analyze the performance of our
algorithm for these types of classes, we can make the edu-
cated guess that our approach will lose some of its effective-
ness when trained on only a small subset of instances from
this type of classes. A precise evaluation for these classes
will be an interesting topic for future work.

A more general limitation of our approach is that it re-
quires feature-rich objects to perform well. This is luck-
ily the case for legged robots which generate a sufficient
amount of interest points. There certainly exist geometri-
cally and texturally simple object classes (such as the single-
colored ball in a RoboCup game) which will not generate
many features. For these sparse kind of object classes, other
methods such as contour matching might turn out to be more
effective than our approach.

One significant feature which we have not discussed in
this paper, is detecting the orientation of objects. Theoret-
ically, it should be possible to retrieve orientation from ob-
jects using the same annotation and clustering methods that
we used for centroid finding. A detailed test and analysis
should be part of future research.

Furthermore, the current approach presented in this pa-
per does not make any use of color. For future work, it
would be interesting to investigate how to best integrate
color-information into the presented voting scheme, and to
analyze what impact this would have on the algorithm’s per-
formance.

References

Cheng, Y. 1995. Mean Shift, Mode Seeking, and Cluster-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17(8):790–799.

Cootes, T.; Edwards, G.; and Taylor, C. 2001. Active ap-

pearance models. IEEE Transactions on Pattern Analysis
and Machine Intelligence 23(6):681–685.

Gavrila, D., and Philomin, V. 1999. Real-time object detec-
tion for smart vehicles. Computer Vision, 1999. The Pro-
ceedings of the Seventh IEEE International Conference on
1.

Gowda, K., and Krishna, G. 1978. Agglomerative clus-
tering using the concept of mutual nearest neighborhood.
Pattern Recognition 10(2):105–112.

Ke, Y., and Sukthankar, R. 2004. PCA-SIFT: A More Dis-
tinctive Representation for Local Image Descriptors. Proc.
CVPR 2:506–513.

Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Os-
awa, E. 1997. RoboCup: The Robot World Cup Initia-
tive. Proceedings of the first international conference on
Autonomous agents 340–347.

Leibe, B.; Seemann, E.; and Schiele, B. 2005. Pedestrian
detection in crowded scenes. Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on 1.

Lowe, D. 1999. Object recognition from local scale-
invariant features. Computer Vision, 1999. The Proceed-
ings of the Seventh IEEE International Conference on
2:1150–1157.

Mikolajczyk, K., and Schmid, C. 2003. A performance
evaluation of local descriptors. IEEE Conference on Com-
puter Vision and Pattern Recognition 2:257–264.

Moradi, M.; Abolmaesoumi, P.; and Mousavi, P. 2006. De-
formable Registration Using Scale Space Keypoints. Pro-
ceedings of SPIE 6144:61442G.

Olson, C., and Huttenlocher, D. 1997. Automatic target
recognition by matching oriented edge pixels. Image Pro-
cessing, IEEE Transactions on 6(1):103–113.

Se, S.; Lowe, D.; and Little, J. 2001. Vision-based mobile
robot localization and mapping using scale-invariant fea-
tures. Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on 2.


